Comparing preference orders: Asymptotic independence

نویسنده

  • Kazuya Kikuchi
چکیده

A decision maker is presented with two preference orders over n objects and chooses the one which is “closer” to his own preference order. We consider several plausible comparison rules that the decision maker might employ. We show that when n is large and the pair of orders to be compared randomly realizes, different comparison rules lead to statistically almost independent choices. Thus, two people with a common preference relation may nonetheless exhibit almost uncorrelated choice patterns. JEL Code: D01

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on Wakker's Cardinal Coordinate Independence

Peter P. Wakker has forcefully shown the importance for decision theory of a condition that he called “Cardinal Coordinate Independence”. Indeed, when the outcome space is rich, he proved that, for continuous weak orders, this condition fully characterizes the Subjective Expected Utility model with a finite number of states. He has furthermore explored in depth how this condition can be weakene...

متن کامل

An AC-Compatible Knuth-Bendix Order

We introduce a family of AC-compatible Knuth-Bendix simplification orders which are AC-total on ground terms. Our orders preserve attractive features of the original Knuth-Bendix orders such as existence of a polynomial-time algorithm for comparing terms; computationally efficient approximations, for instance comparing weights of terms; and preference of light terms over heavy ones. This makes ...

متن کامل

Independence of an Equivariant and Invariant‎ Functions in Generalized Normal Family‎

In this paper we explain a necessary and sufficent condition for independence between any arbitrary statistics with sufficient statistics which is also maximum likelihood estimator in a general‎ ‎exponential family with location and scale parameter namely generalized normal distribution‎. ‎At the end‎, ‎it is shown that the converse is true except in the asymptotic cases‎.

متن کامل

Likelihood-ratio tests for order-restricted log-linear models: A comparison of asymptotic and bootstrap methods

This paper discusses the testing of log-linear models with inequality constraints using both asymptotic and empirical approaches. Two types of likelihood ratio tests statistics are investigated: one comparing the order-restricted model to the independence model, which is the most restricted model, and the other comparing the order-restricted model to the saturated model, or the data. As far as ...

متن کامل

A note on Wakker’s Cardinal Coordinate Independence1

Peter P. Wakker has forcefully shown the importance for decision theory of a condition that he called “Cardinal Coordinate Independence”. Indeed, when the outcome space is rich, he proved that, for continuous weak orders, this condition fully characterizes the Subjective Expected Utility model with a finite number of states. He has furthermore explored in depth how this condition can be weakene...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Mathematical Social Sciences

دوره 79  شماره 

صفحات  -

تاریخ انتشار 2016